Local Blur Mapping: Exploiting High-Level Semantics by Deep Neural Networks

نویسندگان

  • Kede Ma
  • Huan Fu
  • Tongliang Liu
  • Zhou Wang
  • Dacheng Tao
چکیده

The human visual system excels at detecting local blur of visual images, but the underlying mechanism is mysterious. Traditional views of blur such as reduction in local or global high-frequency energy and loss of local phase coherence have fundamental limitations. For example, they cannot well discriminate flat regions from blurred ones. Here we argue that high-level semantic information is critical in successfully detecting local blur. Therefore, we resort to deep neural networks that are proficient in learning high-level features and propose the first end-to-end local blur mapping algorithm based on a fully convolutional network (FCN). We empirically show that high-level features of deeper layers indeed play a more important role than lowlevel features of shallower layers in resolving challenging ambiguities for this task. We test the proposed method on a standard blur detection benchmark and demonstrate that it significantly advances the state-of-the-art (ODS F-score of 0.853). In addition, we explore the use of the generated blur map in three applications, including blur region segmentation, blur degree estimation, and blur magnification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Semantics-Aware Photo Adjustment

Automatic photo adjustment is to mimic the photo retouching style of professional photographers and automatically adjust photos to the learned style. There have been many attempts to model the tone and the color adjustment globally with low-level color statistics. Also, spatially varying photo adjustment methods have been studied by exploiting high-level features and semantic label maps. Those ...

متن کامل

Tracking of Humans in Video Stream Using LSTM Recurrent Neural Network

In this master thesis, the problem of tracking humans in video streams by using Deep Learning is examined. We use spatially supervised recurrent convolutional neural networks for visual human tracking. In this method, the recurrent convolutional network uses both the history of locations and the visual features from the deep neural networks. This method is used for tracking, based on the detect...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

Sensorless Speed Control of Double Star Induction Machine With Five Level DTC Exploiting Neural Network and Extended Kalman Filter

This article presents a sensorless five level DTC control based on neural networks using Extended Kalman Filter (EKF) applied to Double Star Induction Machine (DSIM). The application of the DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some drawbacks such as the uncontrolled of the switching frequency and the strong ripple t...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.01227  شماره 

صفحات  -

تاریخ انتشار 2016